Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3124, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600164

RESUMO

Crop wild relatives offer natural variations of disease resistance for crop improvement. Here, we report the isolation of broad-spectrum powdery mildew resistance gene Pm36, originated from wild emmer wheat, that encodes a tandem kinase with a transmembrane domain (WTK7-TM) through the combination of map-based cloning, PacBio SMRT long-read genome sequencing, mutagenesis, and transformation. Mutagenesis assay reveals that the two kinase domains and the transmembrane domain of WTK7-TM are critical for the powdery mildew resistance function. Consistently, in vitro phosphorylation assay shows that two kinase domains are indispensable for the kinase activity of WTK7-TM. Haplotype analysis uncovers that Pm36 is an orphan gene only present in a few wild emmer wheat, indicating its single ancient origin and potential contribution to the current wheat gene pool. Overall, our findings not only provide a powdery mildew resistance gene with great potential in wheat breeding but also sheds light into the mechanism underlying broad-spectrum resistance.


Assuntos
Ascomicetos , Triticum , Triticum/genética , Melhoramento Vegetal , Genes de Plantas , Ascomicetos/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Doenças das Plantas/genética
2.
Nat Commun ; 15(1): 2449, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503771

RESUMO

Wheat powdery mildew is one of the most destructive diseases threatening global wheat production. The wild relatives of wheat constitute rich sources of diversity for powdery mildew resistance. Here, we report the map-based cloning of the powdery mildew resistance gene Pm13 from the wild wheat species Aegilops longissima. Pm13 encodes a mixed lineage kinase domain-like (MLKL) protein that contains an N-terminal-domain of MLKL (MLKL_NTD) domain in its N-terminus and a C-terminal serine/threonine kinase (STK) domain. The resistance function of Pm13 is validated by mutagenesis, gene silencing, transgenic assay, and allelic association analyses. The development of introgression lines with significantly reduced chromosome segments of Ae. longissima encompassing Pm13 enables widespread deployment of this gene into wheat cultivars. The cloning of Pm13 may provide valuable insights into the molecular mechanisms underlying Pm13-mediated powdery mildew resistance and highlight the important roles of kinase fusion proteins (KFPs) in wheat immunity.


Assuntos
Aegilops , Ascomicetos , Triticum/genética , Genes de Plantas , Resistência à Doença/genética , Ascomicetos/genética , Aegilops/genética , Proteínas Quinases/genética , Doenças das Plantas/genética
3.
Theor Appl Genet ; 135(9): 2993-3003, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35831461

RESUMO

KEY MESSAGE: A novel powdery mildew resistance gene Pm2Mb from Aegilops biuncialis was transferred into common wheat and mapped to chromosome 2MbL bin FL 0.49-0.66 by molecular cytogenetic analysis of 2Mb recombinants. Aegilops biuncialis, a wild relative of common wheat, is highly resistant to powdery mildew. Previous studies identified that chromosome 2Mb in Chinese Spring (CS)-Ae. biuncialis 2Mb disomic addition line TA7733 conferred high resistance to powdery mildew, and the resistance gene was temporarily designated as Pm2Mb. In this study, a total of 65 CS-Ae. biuncialis 2Mb recombinants were developed by ph1b-induced homoeologous recombination and they were grouped into 12 different types based on the presence of different markers of 2Mb-specificity. Segment sizes and breakpoints of each 2Mb recombinant type were further characterized using in situ hybridization and molecular marker analyses. Powdery mildew responses of each type were assessed by inoculation of each 2Mb recombinant-derived F2 progenies using the isolate E05. Combined analyses of in situ hybridization, molecular markers and powdery mildew resistance data of the 2Mb recombinants, the gene Pm2Mb was cytologically located to an interval of FL 0.49-0.66 in the long arm of 2Mb, where 19 2Mb-specific markers were located. Among the 65 2Mb recombinants, T-11 (T2DS.2DL-2MbL) and T-12 (Ti2DS.2DL-2MbL-2DL) contained a small 2MbL segment harboring Pm2Mb. Besides, a physical map of chromosome 2Mb was constructed with 70 2Mb-specific markers in 10 chromosomal bins and the map showed that submetacentric chromosome 2Mb of Ae. biuncialis was rearranged by a terminal intrachromosomal translocation. The newly developed 2Mb recombinants with powdery mildew resistance, the 2Mb-specific molecular markers and the physical map of chromosome 2Mb will benefit wheat disease breeding as well as fine mapping and cloning of Pm2Mb.


Assuntos
Aegilops , Ascomicetos , Aegilops/genética , Ascomicetos/fisiologia , Cromossomos de Plantas/genética , Resistência à Doença/genética , Genes de Plantas , Marcadores Genéticos , Melhoramento Vegetal , Doenças das Plantas/genética , Recombinação Genética , Triticum/genética
4.
Plant Physiol Biochem ; 185: 178-187, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35696892

RESUMO

Phosphate (Pi) availability has become a major constraint limiting crop growth and production. Heat shock factors (Hsfs) play important roles in mediating plant resistance to various environmental stresses, including heat, drought and salinity. However, whether members of the Hsf family are involved in the transcriptional regulation of plant responses to Pi insufficiency has not been reported. Here, we identified that TaHsfA2d, a member of the heat shock factor family, was strongly repressed by Pi deficiency. Overexpressing TaHsfA2d-4A in Arabidopsis results in significantly enhanced sensitivity to Pi deficiency, evidenced by increased anthocyanin content, decreased proliferation and elongation of lateral roots, and reduced Pi uptake. Furthermore, RNA-seq analyses showed that TaHsfA2d-4A functions through up-regulation of a number of genes involved in stress responses and flavonoid biosynthesis. Collectively, these results provide evidence that TaHsfA2d participates in the regulation of Pi deficiency stress, and that TaHsfA2d could serve as a valuable gene for genetic modification of crop tolerance to Pi starvation.


Assuntos
Arabidopsis , Triticum , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Fosfatos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/genética , Triticum/metabolismo
5.
Front Plant Sci ; 13: 918508, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720614

RESUMO

Powdery mildew of wheat is a foliar disease that is spread worldwide. Cultivation of resistant varieties is the most effective, economical, and environmentally friendly strategy to curb this disease. Powdery mildew resistance genes (Pm) are the primary resources for resistance breeding, and new Pm genes are in constant demand. Previously, we identified Aegilops longissima chromosome 6Sl#3 as a carrier of powdery mildew resistance and designated the resistance gene as Pm6Sl. Here, we reported the design of 24 markers specific to 6Sl#3 on the basis of the full-length cDNA sequences of 6Sl#3 donor Ae. longissma accession TA1910, and the development of wheat-Ae. longissima 6Sl#3 introgression stocks by ph1b-induced homoeologous recombination. Further, 6Sl#3 introgression lines were identified and characterized by integration analysis of powdery mildew responses, in situ hybridization, and molecular markers and Pm6Sl was mapped to a distal interval of 42.80 Mb between markers Ael58410 and Ael57699 in the long arm of 6Sl#3. Two resistant recombinants, R43 (T6BS.6BL-6Sl#3L) and T27 (Ti6AS.6AL-6Sl#3L-6AL), contained segments harboring Pm6Sl with less than 8% of 6Sl#3 genomic length, and two markers were diagnostic for Pm6Sl. This study broadened powdery mildew resistance gene resources for wheat improvement and provided a fundamental basis for fine mapping and cloning of Pm6Sl to further understand its molecular mechanism of disease resistance.

6.
Plant Dis ; 105(10): 2938-2945, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33787309

RESUMO

Powdery mildew of wheat, caused by Blumeria graminis f. sp. tritici, is a destructive disease of common wheat. Cultivation of resistant varieties is the most cost-effective disease management strategy. Previous studies reported that chromosome 3Sl#2 present in Chinese Spring (CS)-Aegilops longissima 3Sl#2(3B) disomic substitution line TA3575 conferred resistance to powdery mildew. In this study, we further located the powdery mildew resistance gene(s) to the short arm of chromosome 3Sl#2 (3Sl#2S) by evaluating for B. graminis f. sp. tritici resistance of newly developed CS-Ae. longissima 3Sl#2 translocation lines. Meanwhile, TA7545, a previously designated CS-Ae. longissima 3Sl#3 disomic addition line, was reidentified as an isochromosome 3Sl#3S addition line and evaluated to confer resistance to powdery mildew, thus locating the resistance gene(s) to the short arm of chromosome 3Sl#3 (3Sl#3S). Based on transcriptome sequences of TA3575, 10 novel chromosome 3SlS-specific markers were developed, of which 5 could be used to distinguish between 3Sl#2S and 3Sl#3S derived from Ae. longissima accessions TL20 and TA1910 (TAM4) and the remaining 5 could identify both 3Sl#2S and 3Sl#3S. Also, CL897, one of five markers specific to both 3Sl#2S and 3Sl#3S, could be used to detect Pm13 located at chromosome 3Sl#1S from Ae. longissima accession TL01 in diverse wheat genetic backgrounds. The powdery mildew resistance genes on chromosomes 3Sl#2S and 3Sl#3S, the CS-Ae. longissima 3Sl#2 translocation lines, and the 3SlS-specific markers developed in this study will facilitate the transfer of B. graminis f. sp. tritici resistance genes into common wheat and provide new germplasm resources for powdery mildew resistance breeding.


Assuntos
Aegilops , Aegilops/genética , Cromossomos Humanos Par 3 , Cromossomos de Plantas/genética , Resistência à Doença/genética , Genes de Plantas/genética , Humanos , Doenças das Plantas/genética , Triticum/genética
7.
Sci Rep ; 10(1): 4801, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179864

RESUMO

Agronomic characteristics and tolerance to biotic and abiotic stresses in hexaploid wheat can be drastically improved through wheat-alien introgression. However, the transcriptional level interactions of introduced alien genes in the wheat genetic background is rarely investigated. In this study, we report the genome-wide impacts of introgressed chromosomes derived from Ae. longissima on gene transcriptions of the wheat landrace Chinese Spring. RNA-seq analyses demonstrated 5.37% and 4.30% of the genes were significantly differentially expressed (DEGs) in CS-Ae. longissima disomic 3Sl#2(3B) substitution line TA3575 and disomic 6Sl#3 addition line TA7548, respectively when compared to CS. In addition, 561 DEGs, including 413 up-regulated and 148 down-regulated or not transcribed genes, were simultaneously impacted by introgressed chromosomes 3Sl#2 and 6Sl#3, which accounts for 41.25% of the DEGs in TA3575 and 38.79% in TA7548. Seventeen DEGs, annotated as R genes, were shared by both introgression lines carrying chromosomes 3Sl#2 and 6Sl#3, which confer resistance to powdery mildew. This study will benefit the understanding of the wheat gene responses as result of alien gene(s) or chromosome intogression and the plant defense response initiated by powdery mildew resistance genes in chromosomes 3Sl#2 and 6Sl#3.


Assuntos
Cromatina/genética , Cromossomos de Plantas/genética , Introgressão Genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Triticum/genética , Ascomicetos , Resistência à Doença/genética , Doenças das Plantas/genética , Estresse Fisiológico/genética , Transcrição Gênica/genética
8.
Theor Appl Genet ; 133(4): 1149-1159, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31932954

RESUMO

KEY MESSAGE: A spontaneous Robertsonian T4SlS·4BL translocation chromosome carrying Pm66 for powdery mildew resistance was discovered and confirmed by RNA-seq, molecular marker, and in situ hybridization analyses. Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is a severe disease of bread wheat worldwide. Discovery and utilization of resistance genes to powdery mildew from wild relatives of wheat have played important roles in wheat improvement. Aegilops longissima, one of the S-genome diploid wild relatives of wheat, is a valuable source of disease and pest resistance for wheat. Chromosome 4Sl from Ae. longissima confers moderate resistance to powdery mildew. In this study, we conducted RNA-seq on a putative Chinese Spring (CS)-Ae. longissima 4Sl(4B) disomic substitution line (TA3465) to develop 4Sl-specific markers to assist the transfer of a Bgt resistance gene from 4Sl by induced homoeologous recombination. A pairwise comparison of genes between CS and TA3465 demonstrated that a number of genes on chromosome 4BS in CS were not expressed in TA3465. Analysis of 4B- and 4Sl-specific molecular markers showed that 4BS and 4SlL were both missing in TA3465, whereas 4BL and 4SlS were present. Further characterization by genomic and fluorescent in situ hybridization confirmed that TA3465 carried a spontaneous Robertsonian T4SlS·4BL translocation. Powdery mildew tests showed that TA3465 was resistant to 10 of 16 Bgt isolates collected from different regions of China, whereas CS was susceptible to all those Bgt isolates. The powdery mildew resistance gene(s) in TA3465 was further mapped to the short arm of 4Sl and designated as Pm66.


Assuntos
Aegilops/genética , Ascomicetos/fisiologia , Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Translocação Genética , Triticum/genética , Triticum/microbiologia , Ascomicetos/isolamento & purificação , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia
9.
Int J Mol Sci ; 21(1)2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947730

RESUMO

Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is one of many severe diseases that threaten bread wheat (Triticum aestivum L.) yield and quality worldwide. The discovery and deployment of powdery mildew resistance genes (Pm) can prevent this disease epidemic in wheat. In a previous study, we transferred the powdery mildew resistance gene Pm57 from Aegilops searsii into common wheat and cytogenetically mapped the gene in a chromosome region with the fraction length (FL) 0.75-0.87, which represents 12% segment of the long arm of chromosome 2Ss#1. In this study, we performed RNA-seq using RNA extracted from leaf samples of three infected and mock-infected wheat-Ae. searsii 2Ss#1 introgression lines at 0, 12, 24, and 48 h after inoculation with Bgt isolates. Then we designed 79 molecular markers based on transcriptome sequences and physically mapped them to Ae. searsii chromosome 2Ss#1- in seven intervals. We used these markers to identify 46 wheat-Ae. searsii 2Ss#1 recombinants induced by ph1b, a deletion mutant of pairing homologous (Ph) genes. After analyzing the 46 ph1b-induced 2Ss#1L recombinants in the region where Pm57 is located with different Bgt-responses, we physically mapped Pm57 gene on the long arm of 2Ss#1 in a 5.13 Mb genomic region, which was flanked by markers X67593 (773.72 Mb) and X62492 (778.85 Mb). By comparative synteny analysis of the corresponding region on chromosome 2B in Chinese Spring (T. aestivum L.) with other model species, we identified ten genes that are putative plant defense-related (R) genes which includes six coiled-coil nucleotide-binding site-leucine-rich repeat (CNL), three nucleotide-binding site-leucine-rich repeat (NL) and a leucine-rich receptor-like repeat (RLP) encoding proteins. This study will lay a foundation for cloning of Pm57, and benefit the understanding of interactions between resistance genes of wheat and powdery mildew pathogens.


Assuntos
Aegilops/genética , Ascomicetos/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Aegilops/microbiologia , Cromossomos de Plantas , Resistência à Doença , Genes de Plantas , Mapeamento Físico do Cromossomo , Triticum/genética , Triticum/microbiologia
10.
PLoS One ; 14(11): e0220089, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31710598

RESUMO

Powdery mildew is one of the most widespread diseases of wheat. The development and deployment of resistant varieties are one of the most economical and effective methods to manage this disease. Our previous study showed that the gene(s) at 2Mb in Chinese Spring (CS)-Aegilops biuncialis 2Mb disomic addition line TA7733 conferred a high level of resistance to powdery mildew of wheat. In this study, resistance spectrum of TA7733 was assayed by using 15 Blumeria graminis f. sp. tritici (Bgt) isolates prevalent in different regions of China. The result indicated that TA7733 was highly resistant to all tested Bgt isolates and the gene(s) on chromosome 2Mb conferred broad-spectrum resistance to powdery mildew. In order to characterize mechanism of powdery mildew resistance by identifying candidates R-genes derived from Ae. biuncialis chromosome 2Mb and develop 2Mb-specific molecular markers, we performed RNA-seq analysis on TA7733 and CS. In total we identified 7,278 unigenes that showed specific expression in TA7733 pre and post Bgt-infection when compared to CS. Of these 7,278 unigenes, 295 were annotated as putative resistance (R) genes. Comparatively analysis of R-gene sequences from TA7733 and CS and integration CS Ref Seq v1.0 were used to develop R-gene specific primers. Of 295 R-genes we identified 53 R-genes were specific to 2Mb and could be involved in powdery mildew resistance. Functional annotation of majority of the 53 R-genes encoded nucleotide binding leucine rich repeat (NLR) protein. The broad-spectrum resistance to powdery mildew in TA7733 and availability of 2Mb-derived putative candidate R-gene specific molecular markers identified in this study will lay foundations for transferring powdery mildew resistance from 2Mb to common wheat by inducing CS-Ae. biuncialis homoeologous recombination. Our study also provides useful candidates for further isolation and cloning of powdery mildew resistance gene(s) from Ae. biuncialis chromosome 2Mb.


Assuntos
Aegilops/genética , Ascomicetos , Cromossomos de Plantas , Resistência à Doença/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Análise de Sequência de RNA , Transcriptoma
11.
Int J Mol Sci ; 20(19)2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31581639

RESUMO

Wheat stem rust caused by Puccinia graminis f. sp. tritici (Pgt) had been a devastating foliar disease worldwide during the 20th century. With the emergence of Ug99 races, which are virulent to most stem rust resistance genes deployed in wheat varieties and advanced lines, stem rust has once again become a disease threatening global wheat production. Sr52, derived from Dasypyrum villosum and mapped to the long arm of 6V#3, is one of the few effective genes against Ug99 races. In this study, the wheat-D. villosum Robertsonian translocation T6AS·6V#3L, the only stock carrying Sr52 released to experimental and breeding programs so far, was crossed with a CS ph1b mutant to induce recombinants with shortened 6V#3L chromosome segments locating Sr52. Six independent homozygous recombinants with different segment sizes and breakpoints were developed and characterized using in situ hybridization and molecular markers analyses. Stem rust resistance evaluation showed that only three terminal recombinants (1381, 1380, and 1392) containing 8%, 22%, and 30% of the distal segment of 6V#3L, respectively, were resistant to stem rust. Thus, the gene Sr52 was mapped into 6V#3L bin FL 0.92-1.00. In addition, three molecular markers in the Sr52-located interval of 6V#3L were confirmed to be diagnostic markers for selection of Sr52 introgressed into common wheat. The newly developed small segment translocation lines with Sr52 and the identified molecular markers closely linked to Sr52 will be valuable for wheat disease breeding.


Assuntos
Basidiomycota , Mapeamento Cromossômico , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Recombinação Genética , Triticum/genética , Triticum/microbiologia , Pontos de Quebra do Cromossomo , Genes de Plantas , Marcadores Genéticos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...